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Abstract

It is well known that the steady state of an isentropic flow in a dual-throat nozzle with equal throat areas is not

unique. In particular there is a possibility that the flow contains a shock wave, whose location is determined solely

by the initial condition. In this paper, we consider cases with uncertainty in this initial condition and use generalized

polynomial chaos methods to study the steady-state solutions for stochastic initial conditions. Special interest is given

to the statistics of the shock location. The polynomial chaos (PC) expansion modes are shown to be smooth functions

of the spatial variable x, although each solution realization is discontinuous in the spatial variable x. When the variance

of the initial condition is small, the probability density function of the shock location is computed with high accuracy.

Otherwise, many terms are needed in the PC expansion to produce reasonable results due to the slow convergence of the

PC expansion, caused by non-smoothness in random space.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

In [11] a model for isentropic flow in a dual-throat nozzle with equal throat areas was considered. The

steady-state flow was shown to be either completely supersonic, completely subsonic, or a flow containing a

shock wave connecting the supersonic branch of the solution to the subsonic branch. The location of the

shock wave depends uniquely on the initial condition (see also [3]). The question arises: what can be said

about the shock location if there are uncertainties in the initial conditions. While randomness enters

through the initial conditions in this problem, random effects can generally enter into practical problems
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through boundary conditions, initial conditions, the domain geometry, missing variables, and fluid prop-

erties etc. [10,7,18]. Such random effects in the inputs produce stochastic solutions as outputs, requiring

new methodologies to model and analyze the impact of such uncertainties.

In our case we are interested in the statistics of derived quantities (e.g., the shock position of a solution).

Such are often hard to accurately compute from the first few moments of the solutions. We demonstrate
this point with the following diagram (1). Here n is a vector of random variables. l(x) and r(x) denote
the mean and standard variation of u(x,n), respectively. Xs(n) is the shock location of u(x,n).

lX s
and rX s

are the first two moments of Xs.
ð1Þ
In most practical situations, the deterministic and probabilistic parts of u(x,n) cannot be separated (i.e.,

u(x,n) cannot be written into the form u(x,n) = f(x)g(n)). So the shock locating procedure and statistics

computation procedure do not commute with each other because of the complexity and nonlinearity of

the former. Hence, there is generally no easy way to accurately compute lX s
and rX s

from the first few com-
ponents of {l(x),r(x), . . .}.

When additional information is being required about the solution, series expansion methods

[12,14,7,21,22] appear as a possible choice for the discretization of random fields. However, the correlation

function of the solution is often unknown a priori, therefore polynomial chaos methods seem to be suitable

in this scenery.

In this paper, we study the model equation of the isentropic flow in a dual-throat nozzle with equal

throat areas as introduced in [11]. Generalized polynomial chaos methods are implemented to compute

the probability density function (PDF) of the shock location for the cases where the initial conditions
are assumed to be different random processes (fields). When exact solutions are not available, we use the

basic Monte Carlo (MC) method to validate the results.

The rest of the paper is organized as follows. In Section 2, we recall the basic MC method and general-

ized polynomial chaos methods. We also discuss boundary conditions issues for the system obtained when

introducing the polynomial chaos expansion. Section 3 includes results from the MC method, Hermite and

Jacobi polynomial chaos methods for the model equation. The polynomial chaos expansion is shown to

converge slowly for functions which are discontinuous in the random space. Finally, we summarize the

results of the paper in Section 4.
2. Monte Carlo method and generalized polynomial chaos methods

In this section, we offer a short review of the basic MC method [18] and generalized polynomial chaos

methods [5,19,21,22]. We also discuss the issues of boundary conditions for the systems of hyperbolic equa-

tions arising from the polynomial chaos approach.

2.1. Monte Carlo method

In the basic MC method, one generates a number of samples of the input stochastic processes, solves the

deterministic equations for each sampled input, and computes the statistics of the desired variables from

the solutions. One advantage of MC methods is the simplicity, i.e., we only need to execute the code for

the deterministic problems with the sampled inputs. It can provide accurate solutions as long as the number
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of samples is high enough. A major drawback is the large amount of computing time required when the

standard variation of the output is not small, a particular problem when we are more interested in higher

moments. Importance sampling and correlation methods can be used to substantially improve the efficiency

for certain problems. One can consult the literature [12,18] and references therein for more information on

advanced applications of MC methods.
2.2. Generalized polynomial chaos methods

Generalized polynomial chaos methods [19,5,21,22] involve a spectral representation of the stochastic

processes (random functions). In particular, stochastic processes are expanded into multi-dimensional

orthogonal generalized hypergeometric polynomials [1] of independent identically distributed (iid) random

variables n. For a specific random process, the corresponding hypergeometric polynomials should be used

to achieve optimal accuracy with a minimum number of expansion terms, e.g., Hermite polynomials should
be used for Gaussian processes, and Jacobi polynomials should be used for Beta processes (see [19,22] for a

complete list).

Generalized hypergeometric polynomials form a complete orthogonal basis of the L2 space of random

variables. The weighted inner product is defined as
hf ðx,nÞ,gðx,nÞi ¼
Z

f ðx,nÞgðx,nÞxðnÞdn ¼ E½f ðx,nÞgðx,nÞ�,
where the weight function x(n) is the joint PDF of the random variables. In particular, for the n-dimen-

sional Gaussian random variables, n,
xðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

p e�ð1=2ÞnTn:
As an example, a Gaussian process u(x,h) (with x being the spatial or time coordinate) is expressed as
uðx,hÞ ¼
Xþ1

l¼0

ulðxÞwlðnðhÞÞ,
where n(h) is a vector of iid Gaussian random variables with zero mean and unit variance, and the basis

functions wl(n(h)) are the normalized (multidimensional) Hermite polynomials given by
H ðn,pÞðni1 , . . . ,nipÞ ¼ eð1=2Þn
Tnð�1Þp op

oni1 � � � onip
e�ð1=2ÞnTn
� �

81 6 i1, . . . ,ip 6 n:
In the computations we use the pth order approximation
uP ðx,hÞ ¼
XP
l¼0

ulðxÞwðnÞ
l ðnðhÞÞ, ð2Þ
where P = (n +p)!/n!p! and n(h) = (n1(h), . . . ,nn(h))
T.

The superscript of wðnÞ
l will be omitted if there is no confusion. Note that there is only one zeroth degree

polynomial chaos basis function w0(n) = 1.

Since {wi(n)} form an orthonormal basis, the polynomial chaos expansion coefficients of u(x,n) are given
by
ulðxÞ ¼ huðx,nÞ,wlðnÞi ¼ E½uðx,nÞwlðnÞ�:

It is easy to verify that the mean of u(x,n) is the zero mode u0(x), and the variance is

VARðuðx,nÞÞ ¼
Pþ1

i¼1 ðuiðxÞÞ
2
. Moreover, one can generate any number of realizations of u(x,n) by sampling
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in n. This makes it possible to compute the statistics of any derived quantity of the solutions once {ui} are

known.

2.2.1. Implementation and boundary conditions for hyperbolic equations

A sensitive issue in the application of polynomial chaos methods to hyperbolic equations is the imple-
mentation of boundary conditions. The polynomial chaos method leads to a system of equations for the

expansion coefficients. This system should remain well posed and in particular should not require boundary

conditions at the outflow of the original problem.

Consider the scalar linear hyperbolic equation
ut þ aðx,t,nÞux ¼ 0, 0 6 x 6 p, t > 0, ð3Þ

where a(x, t,n) depends on a random vector n.

We represent the solution as in (2) and take the approximate coefficient as aP ðx,t,nÞ ¼
PP

l¼0alðx,tÞwlðnÞ.
A standard Galerkin procedure yields a system
ouk
ot

þ
XP
i,j¼0

aieijk
ouj
ox

¼ 0, k ¼ 0, . . . ,P ,
where
eijk ¼ E½wiwjwk�:
In matrix form we have
~Ut þ A~Ux ¼ 0, ð4Þ

where ~U ¼ ðu0ðx,tÞ, . . . ,uP ðx,tÞÞT and the matrix A = (Ai, j) has elements
Ai,j ¼
XP
l¼0

aleijl, 0 6 i,j 6 P :
Thus, the scalar equation (3) for the random function u(x, t,n) is transformed to the system (4) of several

deterministic unknowns: {u0(x, t), . . . ,uP(x, t)}. We can determine the nature of the system:

Theorem 1. The system (4) is symmetric hyperbolic. Moreover, if aP(x, t,n) P (6) 0 for all n at a point (x, t),

then the matrix A is positive (negative) semi-definite at this point.

Proof. The symmetry of the matrix A follows directly from the definition of (eijl). Given any real vector
b = (b0, . . . ,bP),
bAbT ¼
XP

i,j¼0
biAijbj ¼

XP
i,j¼0

bibj
XP
l¼0

aleijl ¼
XP
l¼0

al
XP
i,j¼0

bibjeijl ¼
XP

l¼0
al
XP
i,j¼0

bibjE½wiwjwl�

¼ E
XP
l¼0

alwl

 ! XP
i¼0

biwi

 ! XP
j¼0

bjwj

 !" #
¼ E½aP ðx,t,nÞbðx,t,nÞ2�,
where bðx,t,nÞ ¼
PP

i¼0biwi. From the last expression, the theorem follows. h

Note that the theorem implies that the boundary conditions for the derived system (4) are consistent with

the boundary condition of the approximation of the original equation (3). To be specific, the theorem im-

plies that all the new deterministic unknowns are outflow (or inflow) at one boundary if the projection of

the original stochastic unknown is outflow (or inflow) under random fluctuations at the same boundary.
Thus no non-physical conditions are introduced by the polynomial chaos expansion.
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2.3. Computation of a smooth PDF

In this paper we adopt the method presented in [9], for recovering a �smooth� PDF of any random var-

iable based on a few samples. Assume that f(x) is the PDF of a random variable at x, and {x1, . . . ,xN} are N
MC samples. Express f(x) as a series of Legendre polynomials {Pn(x)}:
f ðxÞ ¼
XK
n¼0

fnP nðxÞ,
where
fn ¼
1

kPnk2
Z 1

�1

f ðxÞPnðxÞ:
Compute the above integration with the MC method, i.e.,
Z 1

�1

f ðxÞPnðxÞ �
1

N

XN
i¼1

PnðxiÞ:
Then a smooth probability density function is obtained as
f ðxÞ � 1

N

XN
i¼1

XK
n¼0

1

kPnk2
PnðxiÞPnðxÞ ¼

K þ 1

2N

XN
i¼1

PKþ1ðxÞPKðxiÞ � PKðxÞPKþ1ðxiÞ
x� xi

,

using the Christoffel-Darboux formula [15]. One should note that the adopted method is just a special

orthogonal series estimator as reviewed in [8].
3. Steady-state inviscid burgers equation with source term

When an isentropic flow is choked in a dual-throat nozzle with equal throat areas, the steady flow can

either be entirely supersonic, or subsonic, or contain a shock wave connecting the supersonic branch to the

subsonic branch, depending on its initial state. In the latter case the shock location, is also determined by

the initial state.

In [11] the following simplified model was analyzed:
ou
ot

þ o

ox
u2

2

� �
¼ o

ox
sin2x
2

� �
, 0 6 x 6 p, t > 0, ð5Þ
with the initial condition
uðx,0Þ ¼ b sin x,
and boundary conditions
uð0,tÞ ¼ uðp,tÞ ¼ 0:
The exact steady-state solution to Eq. (5) is
u1ðx,bÞ ¼ lim
t!þ1

uðx,b,tÞ ¼
uþ ¼ sin x, 0 < x 6 X s,

u� ¼ � sin x, X s < x < p:

�
ð6Þ
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The shock position Xs is a function of the parameter b in the initial condition
X s ¼
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q� �
< p=2, �1 < b 6 0,

p� sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q� �
> p=2, 0 < b < 1:

8>>><
>>>:

: ð7Þ
When jbj P 1, u1(x,b) is smooth (=sign(b)sinx).

3.1. Initial condition I: one-dimensional Hermite chaos

Consider Eq. (5) with the initial condition
uðx,b,t ¼ 0Þ ¼ b sin x, ð8Þ

where b is a random variable defined as
b ¼
�1þ

ffiffiffiffiffiffiffiffiffi
1þ4a2

p
2a if a 6¼ 0,

0 if a ¼ 0,

(
or a ¼ b

1� b2
: ð9Þ
Here a is a Gaussian random variable with the mean l and standard variation r, i.e., a � N(l,r). The shock
always exists in the steady state solution because b 2 (�1,1).

From (7), one finds that b = �cos(Xs), i.e.,
a ¼ � cosðX sÞ
ðsinX sÞ2

: ð10Þ
The probability density function of the shock position Xs can therefore be computed directly as
1ffiffiffiffiffiffi
2p

p
r
e�½ða�lÞ2=2r2� da ¼ pðX sÞdX s ! pðX sÞ ¼

1ffiffiffiffiffiffi
2p

p
r
e�½ða�lÞ2=2r2� da

db
db
dX s

,

where p(Xs) denotes the PDF of the shock position being at Xs. This yields
pðX sÞ ¼
1ffiffiffiffiffiffi
2p

p
r
e�½ða�lÞ2=2r2� � 1þ b2

1� b2
� �2 sinðX sÞ, 0 < X s < p, ð11Þ
through b = �cos(Xs) and a as given by (10).

3.1.1. Hermite polynomial chaos solution

Since b is a function of a single Gaussian random variable, a, a one-dimensional Hermite polynomial

chaos approximation (n = 1) suffices to represent the random function u1(x,b(n)), i.e., we consider the

expansion
u1ðx,bðnÞÞ ¼
X1
k¼0

vkðxÞwkðnÞ: ð12Þ
Bear in mind that n is a Gaussian random variable with zero mean and unit variance. In the next theorem

we will establish that this expansion converges. Surprisingly, although u1(x,n) is not smooth in the spatial

variable x, all the coefficients vk(x) are smooth.

Theorem 2. (Smoothness). Let u1(x,b(n)) be defined in (6). Let n be a Gaussian random variable with zero

mean and unit variance and b(n) is defined in (9). Then the expansion (12) converges and the coefficients vk(x)

are smooth.



384 Q.-Y. Chen et al. / Journal of Computational Physics 204 (2005) 378–398
Proof. From the relations between a,n,b and the shock position Xs, one finds
n ¼ 1

r
� cosX s

ðsinX sÞ2
� l

 !
: ð13Þ
This implies that Xs is an increasing function of n and vice versa, when 0 < Xs < p.
Let n0 be the value of n which corresponds to the solution with shock position x0 2 (0,p), For a fixed x0,

the steady-state solution of (5) is given by
u1ðx0,nÞ ¼
� sinðx0ðn0ÞÞ if n 6 n0,

sinðx0ðn0ÞÞ otherwise,

�
ð14Þ
because the shock position is an increasing function of n. Therefore,
1ffiffiffiffiffiffi
2p

p
Z þ1

�1
ðu1ðx0ðn0Þ,nÞÞ2e�n2=2 dn ¼ ðsin x0ðn0ÞÞ2 < þ1,
and thus the expansion (12) converges in mean (see [4]).

The expansion coefficients are given by
vkðx0Þ ¼
1ffiffiffiffiffiffi
2p

p
Z þ1

�1
u1ðx0ðn0Þ,nÞwkðnÞe�n2=2 dn ¼ 1ffiffiffiffiffiffi

2p
p

Z n0ðx0Þ

�1
þ
Z þ1

n0ðx0Þ

 !
u1ðx0ðn0Þ,nÞwkðnÞe�n2=2 dn:
Plugging (14) into the above equation yields
vkðx0Þ ¼
1ffiffiffiffiffiffi
2p

p
Z n0

�1
ð� sin x0ðn0ÞÞwkðnÞe�n2=2 dnþ

Z þ1

n0

sin x0ðn0ÞwkðnÞe�n2=2 dn

� �

¼ sin x0ðn0Þffiffiffiffiffiffi
2p

p
Z þ1

n0ðx0Þ
�
Z n0ðx0Þ

�1

 !
wkðnÞe�n2=2 dn ¼ sin x0ðn0Þffiffiffiffiffiffi

2p
p dk � 2

Z n0ðx0Þ

�1
wkðnÞe�n2=2 dn

� �
, ð15Þ
where
dk ¼
Z þ1

þ1
wkðnÞe�n2=2 dn ¼ dk,0
is independent of x0. Denote the integral in (15) as g(x0). Using the chain rule, one can verify that
ogðxÞ
ox

¼ on
oX s

				
X s¼x

� wkðxÞe�x2=2,
from which one can see that g(x) is a smooth function. The chain rule is valid because n is a smooth func-

tion of the shock position Xs on (0,p) (see (13)). So we have proven that vk(x) is a smooth function of x for

any k. h

In Fig. 1, we show the first five Hermite polynomial chaos modes for the steady state solution of Eq. (5)

when a � N(0,0.1). Fig. 2 shows the absolute values of the first 21 Hermite polynomial chaos modes at the

points 1.5708 and 1.3959. The slow decay is due to the discontinuity of the solution in the random space.

The discontinuity in the random space can already be seen from Eq. (14). To emphasize this point, we draw

a picture (Fig. 3) of the steady-state solution versus x and b, clearly showing the lack of smoothness in b.
To numerically solve Eq. (5) we seek a solution of the form
upðx,b,tÞ ¼
Xp
k¼0

vkðx,tÞwkðnÞ: ð16Þ
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Fig. 1. The first five Hermite polynomial chaos modes for the steady-state solution of Eq. (5) when a � N(0,0.1).
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Following the procedure outlined in Section 2.2.1 we obtain
ovk
ot

þ
Xp
i,j¼0

eijk
vivj
2

� �
x
¼ dk,0 sin x cos xð Þ, k ¼ 0,1, . . . ,p, ð17Þ
where dk, 0 is the Kronecker delta function.

For this model problem, we want to compute the statistics of the shock position which is a derived quan-

tity of the solution. The shock position does not have an analytical formula in general, although it has one

(Eq. (7)) for the above special initial condition. For general cases, a bit more work has to be done in order

to compute the statistics of the shock position. In polynomial chaos methods, it can be achieved by using a

MC method on the computed solution (16). More precisely, we first generate a number of samples of n, and
compute the realizations of the solution by the expansion. The shock position can then be extracted from

each realization. Finally, we can compute the statistics of the shock positions.

Remark 1. The above procedure is very fast because only the series evaluation is involved in computing

each realization.
3.1.1.1. Numerical results. Before solving Eq. (17), we check how accurately the Hermite polynomial chaos

representation approximates the initial condition. The errors for a = N(0,0.1) and N(0,0.3) are plotted in

Fig. 4.

We have applied two schemes to solve Eq. (17): a first-order conservative finite difference (FD) scheme
with a local Lax–Friedrich flux (LLF) [16] and a Chebyshev collocation method [6] with exponential filter-

ing [17] in space. A third-order TVD Runge–Kutta scheme [13] has been used for the time discretization

whenever Chebyshev collocation method is used for the spatial discretization. Otherwise, the first-order

forward Euler scheme is used.
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shock positions from the analytical formula, and then compute the probability density function by the

method described in Section 2.3 from those shock positions. The �pth order PC� represents the probability
density function computed with the same number of shock positions. This time, however, the shock posi-

tions are computed from the series expansion in the way as described above.

Fig. 5 presents the results obtained by the finite difference scheme. The accuracy of the probability
density function is much worse than that obtained using the Chebyshev collocation method (Fig. 6). The

main reason is the large dissipation of the scheme through the local Lax–Friedrich flux which depends
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Lax–Friedrich flux is used for the spatial discretization. 1000 grid points on the domain [0,p]. CFL = 0.9.
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on the eigenvalues of the flux-Jacobian of the system. Increasing the number of the Hermite polynomial

chaos terms in the numerical solution of Eq. (17), increases the size of the system and the spectral radius

(as shown in Table 1), and results in additional dissipation. (Note that the largest absolute eigenvalues in

Table 1 are numerically computed.) Thus, the Chebyshev collocation method with N = 128 is used for the

spatial discretization in the remaining numerical tests of the paper. And a sixth-order exponential filter is

used in space unless specified otherwise.

The errors of up to the fourth-order moment of the shock position are also computed for the polynomial
chaos method with a Chebyshev collocation method for the spatial discretization (see Fig. 7). When

a � N(0,0.1), the errors are very small for the fifth- or higher order polynomial chaos methods. It is con-

sistent with the PDF result in Fig. 6. For a � N(0,0.3) or N(0,0.6), slow convergence is observed for high

order moments. The spatial and time discretization errors dominate when the errors are small, thus the lack

of improvement when increasing the polynomial chaos order p.

3.2. Initial condition II: one-dimensional Jacobi chaos

In this section we consider the initial condition (8) with b being a Beta random variable (b � Beta(r, s))

over the domain [�1,1]. For this initial random process, Jacobi polynomials are the natural choice for the

polynomial chaos basis functions [19].

The probability density function of the shock locations Xs is
pðX sÞ ¼
ð1þ bÞr�1ð1� bÞs�1

2rþs�1Bðr,sÞ
sinX s, 0 < X s < p,
where b = �cos(Xs), Bðr,sÞ ¼ CðrÞCðsÞCðr þ sÞ is the Beta function, and C(r) is the Gamma function.
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Fig. 6. PDF of shock positions from Hermite polynomial chaos methods. A Chebyshev collocation method with N = 128 is used for

the spatial discretization. Dt ¼ ð2=3pÞN�2, where p is the order of the polynomial chaos. Exponential filter order is 6. (upper left)

a = N(0,0.1), 100,000 samples are used to compute the PDF; (upper right) a = N(0,0.3), 100,000 samples are used to compute the PDF;

(lower) a = N(0,0.6), 200,000 samples are used to compute the PDF.
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Similar to the Hermite polynomials chaos case, it is enough to use a one-dimensional Jacobi chaos
expansion. The equations after applying the Galerkin procedure have the same form (17), but with the

matrix e being computed from the Jacobi polynomials instead of the Hermite polynomials.



Table 1

Largest absolute eigenvalue (k) of the flux-Jacobian matrix in Eq. (17) (a = N(0,0.1))

PC Order 3 5 7 9 11

k 3.41 6.95 19.04 29.07 42.24

1000 grid points is used in the spatial direction.
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Fig. 7. Errors of up to the fourth moment of the shock position whose PDF is shown in Fig. 6. (upper left) Mean; (upper right)

variance; (lower left) third moment (skewness); (lower right) fourth moment (kurtosis). (–�–) a � N(0,0.1); (–·–) a � N(0,0.3); (–n–)

a � N(0,0.6).
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As before we can state

Theorem 3. (Smoothness). The coefficients in the Jacobi polynomial chaos expansion of the steady-state

solutions are smooth.

Proof. The proof is omitted as it follows the approach in Theorem 2. h

In Figs. 8–11, we show the first five Jacobi polynomial chaos modes and the decay rate of the first 21

Jacobi polynomial chaos modes at some points for r = s = 1 and r = s = 10.

3.2.1. Numerical results

Since b is Beta distributed, there is no error introduced when expanding the initial condition into the

Jacobi polynomial chaos basis functions. We test three different initial conditions: b � Beta(1,1), Beta(5,5),

and Beta(10,10). The results from the Chebyshev collocation method are shown in Fig. 12. When
b � Beta(10,10), the probability density function is computed with high accuracy. As the variance of b in-

creases, many more Jacobi polynomial chaos terms (i.e., higher order polynomial chaos methods) are

needed to produce reasonable results. This is because the solution is discontinuous in the random space

and b is more localized for large r. (Note that b has PDF � (1 � b2)r when r = s.)

3.3. Initial condition III: two-dimensional Hermite chaos

In this section we consider random field initial conditions of the form
uðx,b,t ¼ 0Þ ¼ rð
ffiffiffiffiffi
k1

p
f1ðxÞb1 þ

ffiffiffiffiffi
k2

p
f2ðxÞb2Þ, ð18Þ
where b1 and b2 are functions of two independent identically distributed Gaussian random variables a1 and
a2, respectively. The relations between ai and bi are given in (9).We assume that {kn} and {fn(x)} take the form
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kn ¼
2b

1þ b2x2
n

, n ¼ 1,2, . . .
and
fnðxÞ ¼

cosðxnðx�p=2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþsinð2xnaÞ

2xn

p if n is odd,

sinðxnðx�p=2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�sinð2xnaÞ

2xn

p if n is even,

8><
>:
where a = p/2, b = 10, and the increasing sequence {xn} satisfies
1
b � xn tanðxnaÞ ¼ 0 if n is odd,

xn þ 1
b tanðxnaÞ ¼ 0 if n is even:

(

Remark 2. The initial condition (18) (with r = 1) given as above is the truncated Karhunen–Loève

expansion of the exponential correlation [20] Cðx1,x2Þ ¼ e�jx1�x2j=b. One can refer to [5] for more details

about the applicability of the Karhunen–Loève expansions in approximating the input random process.

Figs. 13 and 14 show the PDF of the shock positions for a1,a2 � N(0,0.1) and N(0,0.3) when r = 0.4.

3.4. Initial condition IV: two-dimensional Jacobi chaos

As in Section 3.3, the initial condition takes the form (18). But instead, we assume b1 and b2 are Beta

distributed. Numerical results for b1,b2 � Beta(5,5) and Beta(10,10) are shown in Figs. 15 and 16. One

can see that the PDF from the polynomial chaos methods does appear to converge to the exact PDF,

although it is still not very accurate for the eighth-order Jacobi chaos.
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Fig. 12. PDF of shock positions from Jacobi polynomial chaos methods. 100,000 samples are used to compute the PDF. Other

parameters are the same as used in Fig. 6. (upper left) b = Beta(1,1); (upper right) b = Beta(5,5); (lower) b = Beta(10,10).
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4. Summary

We have studied the effect of random initial conditions on the structure of the steady-state isentropic

flow in a dual-throat nozzle with equal throat areas. Generalized polynomial chaos methods were imple-

mented to analyze the uncertainty of the shock position for different stochastic initial conditions. Our main
conclusions are:
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� The polynomial chaos expansion modes are smooth functions of the spatial variable x, although the indi-

vidual solution realizations are discontinuous in the spatial variable x.

� The solution is discontinuous in the random variable space at a fixed point x. Filtering is necessary for

the stability of the scheme, as generalized polynomial chaos methods are spectral representations of the

random processes.
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� When the variance of the initial condition is small, the probability density function of the shock location

is computed with high accuracy. Otherwise, many polynomial chaos expansion terms are needed to pro-

duce reasonable results. As first noted by Chorin [2], this is due to the slow convergence of the polyno-

mial chaos expansions.

� The largest absolute eigenvalue of the flux-Jacobian matrix of the system increases quickly with respect
to the number of the polynomial chaos terms used in the expansion. This might cause large dissipation

for some numerical schemes. The increasing size of the system, when using more polynomial chaos

terms, could also be problematic if one wants to solve the system with a high order numerical scheme

using characteristic decomposition, e.g., high order ENO or WENO methods.
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